

Retinopathy of prematurity progression and its related factors: A cohort study in preterm infant in northern Iran

Seyed Ahmad Rasoulinejad (MD) *1 D, Ahad Alizadeh (PhD) 2 D

- 1. Associate Professor of Retina & Vitreous, Department of Ophthalmology, Ayatollah Rouhani Hospital, Babol University of Medical Sciences, Babol, Iran, a.rasoulinejad@mubabol.ac.ir.
- 2. Assistant Professor of Biostatistics, Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran, a-alizadeh@alumnus.tums.ac.ir.

Article Info ABSTRACT

Article type:

Research Article

Received: 2 Jan 2020 Revised: 26 Feb 2020 Accepted: 1 March 2020

Keywords:

Arterial Blood Gas,
Infant,
Oxygen Saturation,
PO2,
Retinopathy of Prematurity

Background and Objective: Retinopathy of Prematurity (ROP) is a vasoproliferative retinal disease in premature infants, causing lifetime visual

impairment and blindness at an early age. The aim of this study was to investigate the impact of oxygen profile in the progression of ROP.

Methods: This prospective cohort study (from 2010 to 2020) was applied in the Ophthalmology center of Ayatollah Rouhani Hospital in Babol (Babol University of Medical Sciences, Babol, Iran) included 828 infants (<37 weeks of gestation with a birth weight <2500 g). Moreover, the oxygen profile of infants (with/without ROP) was collected from their history profile in terms of arterial blood gas.

Findings: The duration of oxygen therapy was significantly higher in ROP patients (9.19 \pm 14.33 days), compared to control (3.16 \pm 4.35 days), (P=0.002). The minimum level of PO₂ was significantly lower in ROP infants (51.71 \pm 44.81 mmHg) compared to controls (92.75 \pm 65.45 mmHg, P<0.001). Furthermore, patient with zone 1 involvement had higher PO₂ level than the patient with zone 2 involvement (P=0.029). The ventilation requirement was more frequent in ROP patients (39.27%) compared to controls (19.24%, P<0.001). Also, the CPAP requirement was more frequent in ROP patients (48.51%) compared to controls (32.95%, P<0.001).

Conclusion: Our results have indicated that the duration of oxygen therapy and the minimum and maximum level of PO_2 are indicators of ROP occurrence.

Cite this article: Rasoulinejad SA, Alizadeh A. Retinopathy of prematurity progression and its related factors: A cohort study in preterm infant in northern Iran. *Caspian J Pediatrs* March 2020; 6(1): 407-13.

© The Author(s).

Publisher: Babol University of Medical Sciences

^{*}Corresponding Author: Seyed Ahmad Rasoulinejad (MD),

Introduction

Retinopathy of prematurity (ROP) is a vasoproliferative retinal disease in premature infants affecting the premature development of the respiratory system of premature infants ^[1, 2]. This infantile disease causes lifespan blindness or visual impairment at an early age ^[3, 4]. ROP is characterized by abnormal intravitreal neovascularization in the retina, which is a result of impairment in the development of the lungs ^[5, 6]. ROP severity has divided into five stages which start with the primary phase and anticipate advanced ROP that comes with hemorrhage, fibrovascular alterations, vitreoretinal traction, and retinal detachment ^[7, 8]. Moreover, three zones of the retina are involved in ROP, which indicates the rate of ROP involvement in terms of vascularization manner. Low birth weight, hypoxia, and low gestational age are the risk factor that has been proved in the pathogenesis of ROP ^[9-13].

Hypoxia plays a critical role in the development and progression of ROP. The hypoxic condition in the retina leads to aberrant metabolism in affected cells ^[14-16]. As a pathophysiologic response, the hypoxic cells secret vascular endothelial growth factor (VEGF) which leads to angiogenesis in a fibrovascular proliferation manner. This abnormal angiogenesis causes retinal detachment, which progresses ROP ^[17-19]. Therefore, the investigation of the correlation of the oxygen profile and progression of ROP helps to realize more facts about the progressive and prognostic factors in ROP infants. Also, there is no study on the impact of different oxygen-related factors, including blood gases, oxygen delivery system, oxygen saturation, oxygen delivery methods and so on, in the progression of ROP. In this study, we investigated the relation of the oxygen profile via ROP infants in the progression of ROP.

Methods

Design study and participant

This prospective census-based cohort study (from 2010 to 2020) was applied in the NICU center of Ayatollah Rouhani Hospital in Babol (Babol University of Medical Sciences, Babol, Iran) included 828 preterm infants (<37 weeks of gestation with a birth weight <2500 g). All infants with gestational age>37 weeks and birth weight >2500 gr as well as without incomplete medical records were excluded from the current study.

Data collection

All ophthalmic examinations were performed via a vitreoretinal surgeon ophthalmologist. Initial examinations were performed in referring time; one hour after the administration of 2.5% phenylephrine and 0.5% tropicamide and funduscopic examinations implemented by using a binocular indirect ophthalmoscope, 28D lens, scleral depressor, and pediatric speculum. The infants were separated into two groups in terms of ROP; the infants with no signs of ROP were considered as the control group, and infants with different stages of ROP were considered as the case group. In ROP cases, the regular ophthalmic follow-up examinations were continued, and treatment protocol, including anti-vascular endothelial growth factor injection, was conducted according to the international classification of retinopathy of prematurity (ICROP) criteria [20]. The Zones of ROP were categorized as bellow: Zone I (The area defined by a circle centered on the optic nerve), Zone II (The area extending centrifugally from the edge of Zone I), and Zone III (The residual temporal crescent of the retina anterior to Zone II). In addition, ROP severity was divided into five stages started with the primary phase and anticipated advanced ROP that came with hemorrhage, fibrovascular alterations, vitreoretinal traction, and retinal detachment, as ICROP criteria.

Besides, the oxygen profile, including days of oxygen therapy, maximum level of FiO₂, minimum level of PO₂, maximum level of PCO₂, level of HCO₃, level of PO₂ and CO₂, oxygen saturation percentage, ventilation requirement, and continuous positive airway pressure (CPAP) requirement of infants (with/without ROP) were collected from their medical recordings in terms of arterial blood gas (ABG).

Statistical analysis

Statistical analysis was performed using the SPSS 21.0. Quantitative variables were reported with mean \pm Std. Univariate comparisons of risk factors between the groups were evaluated by Chi-square and independent T-test. The level of significance was taken to be P <0.05 for all statistical tests.

Results

Correlation of oxygen profile with ROP status

In this study, 303 infants (of 828; 36.59%) had ROP. Regarding with oxygen profile of infants with ROP, the duration of oxygen therapy was significantly higher in ROP patients (9.19 ± 14.33 days) compared to control (3.16 ± 4.35 days), (P =0.002). Furthermore, the minimum level of PO₂ was significantly higher in non-ROP infants (92.75 ± 65.45 mmHg) compared to ROP infants (51.71 ± 44.81 mmHg) (P <0.001). Also, the maximum level of PO₂ was significantly higher in non-ROP infants (110.98 ± 59.50 mmHg) compared to ROP infants (83.91 ± 64.60 mmHg) (P =0.018). The CPAP and ventilation requirements were significantly correlated with ROP (p <0.001). In ROP infants, 39.27% of patients needed ventilation, while just 19.24% of non-ROP infants were required to ventilation (P <0.001). Additionally, 48.51% of ROP infants were required to CPAP, while 32.95% of non-ROP infants were required to CPAP (P <0.001). There was no significant correlation between other oxygen profile indicators and ROP (table 1).

Correlation of oxygen profile of premature infants and stage of ROP

The results show that the maximum pressure of O_2 was significantly different in different stages of ROP (P=0.05), (table 2). Also, multiple comparisons via Tukey HSD analysis indicated that maximum PO_2 was significantly different between stage 1 and stage 3 of ROP (P <0.042), (table 3). Furthermore, no other indicators of oxygen profile were correlated with stages of ROP.

Considering the results, the maximum pressure of O_2 was significantly different in various zone involvement of ROP (P =0.027). Further, the maximum pressure of CO_2 was significantly different in various zone involvements of ROP (P =0.048). Interval comparison of zones demonstrated that a significant difference of O_2 maximum pressure was related to the difference of O_2 maximum pressure between zone 1 and zone 2 (P =0.029), (table 4). As well, an interval comparison of CO_2 maximum pressure illustrated no significant correlations between different zones. Moreover, no other indicators of oxygen profile were correlated with zones of ROP.

Table 1. Correlation of oxygen profile and therapeutic requirements with ROP status in first examination

Factors	Unit	Total	Sta	Status		
ractors	Omt	Total	Non-ROP	Non-ROP	Status	
Days of Oxygen Therapy	Days	4.47±8.31	3.16±4.35	9.19±14.33	0.002	
Max of FiO ₂	mmHg	52.82±21.88	51.83±20.10	54.53±25.56	0.409	
Min of PO ₂	mmHg	87.62±65.43	92.75±65.45	51.71±44.81	< 0.001	
Max of PO ₂	mmHg	105.63±63.15	110.98±59.50	83.91±64.60	0.018	
Min of PCO ₂	mmHg	40.04±31.80	38.05±14.19	48.40±63.41	0.295	
Max of PCO ₂	mmHg	45.23±16.54	43.62±18.39	55.00±13.07	<0.001	
PCO ₂	mmHg	40.62±11.46	41.14±11.80	39.52±9.68	0.219	
HCO ₃	mEq/L	21.80±10.74	21.72±8.47	21.08±6.09	0.483	
PO_2	mmHg	57.43±43.60	59.68±41.30	57.06±36.78	0.645	
Oxygen Saturation	%	75.60±17.58	76.38±18.10	75.04±14.51	0.651	
Vandilation Descripement	No	608 (73.43%)	424 (80.76%)	184 (60.73%)	<0.001	
Ventilation Requirement	Yes	220 (26.57%)	101 (19.24%)	119 (39.27%)	<0.001	
CDAD Dogginsment	No	508 (61.35%)	352 (67.05%)	156 (51.49%)	<0.001	
CPAP Requirement	Yes	320 (38.65%)	173 (32.95%)	147 (48.51%)	<0.001	

[Downloaded from caspianjp.ir on 2025-10-16]

Table 2 Correlation of overen profile indicators and ROP in term of stage and zone

Table 2. Correlation of oxygen profile indicators and R Stages						Zone										
dicator		age 1		Stage Stag 2					Zone 1 Zone 2		1e 2	2 Zone 3				
Oxygen indicator	Mean	SD	Mean	SD	Mean	SD	F	p- value	Mean	SD	Mean	SD	Mean	SD	F	p- value
Days of Oxygen therapy	9.652	12.5140	6.083	8.0158	13.188	22.0793	1.207	0.306	7.947	7.9685	11.815	19.6450	6.625	8.9135	0.763	0.471
Max of FiO ₂	54.42	25.061	49.21	24.933	61.87	26.638	1.278	0.284	64.50	26.453	50.83	27.234	51.04	20.485	2.197	0.118
Min of PO ₂	47.16	52.561	62.11	46.307	39.22	16.521	0.936	0.400	42.77	18.276	43.64	33.879	79.55	74.206	2.842	0.069
Max of PO ₂	65.28	57.931	78.56	53.348	128.78	84.169	3.221	0.050	115.54	73.964	57.76	40.806	99.50	78.981	3.937	0.027
Min of PCO ₂	67.125	102.5631	37.313	8.4673	37.100	10.8878	1.079	0.350	38.214	10.9064	39.444	8.1256	85.222	137.2396	1.869	0.168
Max of PCO ₂	50.867	10.8487	57.714	17.8516	58.600	5.1897	1.448	0.248	61.214	10.5698	52.625	11.8596	48.250	15.4712	3.324	0.048
PCO ₂	40.140	8.4579	39.105	10.8000	39.400	10.5501	0.126	0.882	39.044	8.9990	40.138	10.4064	38.615	8.7832	0.256	0.775
НСО3	20.965	6.0932	21.381	6.4796	20.879	5.9200	090.0	0.942	20.444	2.1885	20.638	4.2781	22.500	10.3305	0.895	0.412
PO ₂	61.400	46.0742	51.860	23.0070	54.412	32.8844	0.524	0.594	49.267	21.3724	53.151	28.1671	72.667	58.2106	2.232	0.115
Oxygen saturation	69.24	18.168	77.90	12.515	78.50	9.415	2.193	0.123	76.82	13.768	76.00	13.939	70.13	18.735	0.582	0.563

Table 3. Multiple comparisons of maximum PO2 in different stages of ROP

Interval comparison of	Mean Difference (I-J)	Std. Error	p-value	95% Confidence Interval			
	Mean Difference (1-3)	Stu. Elloi	p-varue	Lower Bound	Upper Bound		
Stage 1 and stage 2	-13.278	20.709	0.798	-63.59	37.03		
Stage 1 and stage 3 and 4	-63.500*	25.363	0.042	-125.12	-1.88		
Stage 2 and stage 3and4	-50.222	25.363	0.130	-111.84	11.40		

Tuble 4. Multiple comparisons of maximum 1 of and maximum 1 of m uniterest zone of North									
Indicator	Interval companies of	Mean	Std.	P-value	95% Confidence Interval				
	Interval comparison of	Difference (I-J)	Error	P-value	Lower Bound	Upper Bound			
of 2	Zone 1 and zone 2	57.777 [*]	21.705	.029	5.00	110.56			
Max PO2	Zone 1 and zone 3	16.038	25.870	.810	-46.87	78.94			
	Zone 2 and zone 3	-41.738	23.631	.194	-99.20	15.72			
of)2	Zone 1 and zone 2	8.5893	4.4768	.148	-2.367	19.545			
Max o	Zone 1 and zone 3	12.9643	5.4217	.057	304	26.233			
	Zone 2 and zone 3	4.3750	5.2970	.690	-8.588	17.338			

Table 4. Multiple comparisons of maximum PO₂ and maximum PCO₂ in different zone of ROP.

Discussion

Our results suggested that the number of days of oxygen therapy was significantly higher in ROP patients compared to control. The insufficient level of oxygen led to retinopathy in premature infants. Therefore, the requirement for oxygen was more in ROP infants. Like the current study, Teoh et al. showed that the duration of oxygen therapy was significantly correlated with the progression of ROP ^[21]. In addition, Higgins represented that the duration of oxygen therapy was correlated with ROP ^[22].

Our results revealed that the minimum level of PO₂ was significantly higher in non-ROP infants compared to ROP infants. These findings confirmed the more requirements for oxygen in ROP patients who received more oxygen, and the minimum level of PO₂ was higher due to the more oxygen therapy. Besides, similar to our results, York et al., PO₂ was introduced as a risk factor of ROP ^[23]. Moreover, Higgins's study indicated oxygen saturation as a critical factor in ROP ^[22]. Therefore, PO₂ can be a potent prognostic factor to indicate ROP status in premature infants.

CPAP and ventilation devices are two important machines to deliver a desired concentration of oxygen to premature infants. Our results showed that CPAP and ventilation requirements were significantly correlated with ROP. In ROP infants, 39.27% of patients required ventilation, while just 19.24% of non-ROP infants required ventilation, indicating a more severe condition in the insufficiency of oxygen in ROP infants compared to non-ROP infants. Further, 48.51% of ROP infants were required to CPAP, while 32.95% of non-ROP infants were required to CPAP. Mohagheghi et al. stated that the ventilation and CPAP application could be a critical factor in the reduction of ROP [24], which is consistent with the results of the present study. Further, Mohagheghi et al. represented that volume guarantee ventilation led to a reduction of ROP rate in premature infants. The ongoing study suggested holding a clinical trial to select the desired duration for ventilation and CPAP application in ROP patients.

Finally, the results of the present study exhibited that the maximum level of PO₂ was higher in stage 3 and more of ROP. On the other hand, the higher stage of ROP was observed in immature infants with a worse condition, requiring more duration of oxygen therapy. Therefore, it is regular that the maximum level of PO₂ is higher in stage 3 and more of ROP due to the worse condition of premature infants. The non-synchronized medical records, involvement of one medical center, inaccessibility to other factors, i.e., the lifestyle of the mother, and so on were the limitations of this study.

In conclusion, the oxygen profile is critical in ROP progression. The insufficient concentration of oxygen leads to a worse condition in ROP progression. The findings of the current study revealed that a high concentration of oxygen therapy was found in ROP patients. For an investigation of the predictive role of oxygen profile on ROP status, we recommend holding a trial on follow-up of the ROP infants in the hospitalization period and screening the value of arterial blood gases.

Downloaded from caspianjp.ir on 2025-10-16

Acknowledgment

The authors have special thanks from the NICU department of Ayatollah Rouhani Hospital, Babol, Iran.

Conflict of interests

The authors declare that there is no conflict of interest.

Funding

This study was self-funded.

Ethical Code

Institutional Ethics Committee Approval was obtained from the local ethics committee: (IR.MUBABOL.HRI.REC.1399.373).

References

- 1. Ebrahim M, Ahmad RS, Mohammad M. Incidence and risk factors of retinopathy of prematurity in Babol, North of Iran. Ophthalmic Epidemiol 2010; 17(3): 166-70.
- 2.Gilbert C. Retinopathy of prematurity: a global perspective of the epidemics, population of babies at risk and implications for control. Early Hum Dev 2008; 84(2): 77-82.
- 3.Blencowe H. Lawn JE. Vazquez T. et al. Preterm-associated visual impairment and estimates of retinopathy of prematurity at regional and global levels for 2010. Pediatr Res 2013; 74 (Suppl 1): 35-49.
- 4. Ahmadpour-kacho M, Jashni Motlagh A, Rasoulinejad SA, et al. Correlation between hyperglycemia and retinopathy of prematurity. Pediatrs Inter 2014; 56(5): 726-30.
- 5.Garcia-Valenzuela E, Kaufman LM. High myopia associated with retinopathy of prematurity is primarily lenticular. J American Associat Pediatr Ophthalmolog Strabism 2005; 9(2): 121-8.
- 6.Gilbert C, Malik AN, Nahar N, et al. Epidemiology of ROP update-Africa is the new frontier. Semin Perinatol 2019; 43(6): 317-22. WB Saunders.
- 7. Good WV, Gendron RL. Retinopathy of prematurity. Ophthalmol Clin North Am 2001; 14(3): 513-9.
- 8.Niwald A. Risk factors of 3rd stage retinopathy of prematurity progression. Klin Oczna 2000; 102(6): 449-53.
- 9.Smith LE. Pathogenesis of retinopathy of prematurity. Growth Horm IGF Res 2004; 14(Suppl A): 140-4.
- 10.Azimi M, Rasoulinejad SA, Pacut A. Iris recognition under the influence of diabetes. Biomed Engineer/Biomed Tech (Berl). 2019; 64(6): 683-9.
- 11.Rasoulinejad SA, Zarghami A, Hosseini SR, et al. Prevalence of age-related macular degeneration among the elderly. Caspian J Intern Med 2015; 6(3): 141-7.
- 12.Rasoulinejad SA, Hajian-Tilaki K, Mehdipour E. Associated factors of diabetic retinopathy in patients that referred to teaching hospitals in Babol. Caspian J Intern Med 2015; 6(4): 224-8.
- 13.Adams GGW. ROP in Asia. Eye (Lond) 2020; 34(4): 607-8.
- 14.Chen M, Citil A, McCabe F, et al. Infection, oxygen, and immaturity: interacting risk factors for retinopathy of prematurity. Neonatolog 2011; 99(2): 125-32.
- 15.Leske DA, Wu J, Fautsch MP, et al. The role of VEGF and IGF-1 in a hypercarbic oxygen-induced retinopathy rat model of ROP. Mol Vis 2004; 10(1): 43-50.
- 16.Andresen JH, Saugstad OD. Oxygen metabolism and oxygenation of the newborn. Semin Fetal Neonatal Med. 2020; 25(2): 101078. WB Saunders.
- 17.Di Fiore JM, MacFarlane PM, Martin RJ. Intermittent hypoxemia in preterm infants. Clinic Perinatolog 2019; 46(3): 553-65.

- 18.Chen ML, Guo L, Smith LE, et al. High or low oxygen saturation and severe retinopathy of prematurity: a meta-analysis. Pediatrs 2010; 125(6): e1483-92.
- 19. Aouiss A, Idrissi DA, Kabine M, Zaid Y. Update of inflammatory proliferative retinopathy: Ischemia, hypoxia and angiogenesis. Curr Res Transl Med 2019; 67(2): 62-71.
- 20.International Committee for the Classification of Retinopathy of Prematurity. The international classification of retinopathy of prematurity revisited. Arch Ophthalmolog (Chicago, Ill.: 1960) 2005; 123(7): 991-9.
- 21.Teoh SL, Boo N, Ong LC, et al. Duration of oxygen therapy and exchange transfusion as risk factors associated with retinopathy of prematurity in very low birth weight infants 1995; 9(6): 733-7.
- 22. Higgins RD. Oxygen Saturation and Retinopathy of Prematurity. Clin Perinatol 2019; 46(3): 593-9.
- 23. York JR, Landers S, Kirby RS, et al. Arterial oxygen fluctuation and retinopathy of prematurity in very-low-birth-weight infants. J Perinatolog 2004; 24(2): 82-7.
- 24. Mohagheghi P, Khosravi N, Samaii H. Retinopathy of prematurity and blood transfusion protocols. Iran J Public Health 2003: 32(4): 64-7.